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This report describes the research results on Honeywell's Hierarchical

Mul tisensor Image Understanding program. Honeywell is developing & unified
framework for the different hierarchical levels of image proceasing such as
segmentation, detection, classification, and identification of outdoor scenes
and across different sensor modalities such as millimeter wave, infrared, and
visible. Current activities on the project are reviewed under the following
headings: (1) A Survey of Multisource Information Fusion Systems; (2) The
Role of Structure in Human and Machine Perception; (3) A Knowledge Based
Image Segmentation System; (4) The Use of Optical Flow as a Depth Cue in
Scene Analysis and (5) Belief Maintenance for a Fuzzy Reasoning System. Past
activities on the project which are reported in Annual Report covering period
October 1983 - September 1984 include (a) AI-based Generic Image Segmentation
and Object Recognition; (b) Evidence-Confidence Paradigms for Image
Understanding; (¢) Hierarchical Systems Theory for Control Structures, and
(d) Invariant Methods in Image Undera:,anding.
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1.0 INTRODUCTION

The human brain {s able to accept {nformation from multiple sources (1.e. five
senses), fuse the information into a single pool of knowledge, reason across
the knowledge, predict which of the sources will provide the most beneficial
amount of new information, and direct resources to those sources in order to
concentrate on processing new information. In this way the human successfully
interacts with his enviromment, assessing and understanding ongoing situations.

Often this information 1s the result of partial scanning of the domain,
resource~11im{ted processing, many-to~less heuristic beliefs, probabilistic
assumptions, and dimensional mapping. Thus, human processing uses {nformatfon
which can be incomplete, uncertain, even incorrect, and even inherently
evidential. Each piece of information thus has some amount of belief
associated with it based on its source, condition of collection, metnod of
collection, etc. In other words, the belief is based on evidence. Making an
inference about the world based on the beliefs of the information (and
associated evidence) requires not only reasoning over the information but
reasoning about the belief of the information and the evidence that that belief
is based on.

Befng able to manage multiple sources of information is a skill at which humans
must be proficient in order to interact with their environment. The goal of
intelligent systems is also intelligent environmental interaction. These
systems will need multiple sources/sensors which can provide a'variety of
environmental information. Like their human counterparts, intelligent systems
which are to {nteract with their environments must be able to fuse,
evidentially reason over, and control the processing of multiple sources of
uncertain, complete and fncorrect knowledge. What follows is a survey of the
design of such systems. In surveying the state-of-the-art in Multisource
Information Fusion (MSIF) the research breaks down into three subtopics: The
design of the entire MSIF System, the work done in Evidential Reasoning, and in
Planning and Control of the multiple sources.




E 2.0 SYSTEM OESIGN
7
: A Myltisource Information Fusfion System must perform a multitude of tasks.
; The sensors must be controlled; the low level data processed into high level j:
knowledge; uncertainty factors assigned to data, knowledge and process/system i
assumptions; information must be pooled and extrapolated; assumptions about o

the data must be made and response to these assumptions must be created,
planned out and executed. These tasks can be shown by Figure 1. In
searching the literature only the work of Garvey and Lowrance [Garvey and -
Lowrance, 84; Garvey and Fischler,80; and others in the System Design
references] has addressed the issue of a complete system design. Their work
emphasized a system work 1isted for battle threat assessment. In their

N

X design they use four basic tasks (see Figure 2): -
o« [
Y 1)  ANTICIPATE: Using current information, this task attempts to N
. identify prospective significant events. The system {s looking for w
: "what will happen next"™? The knowledge used includes known -

entities in the environment, their capabilities, entities often

associated with them, etc. This module is attempting to

hypothesize what it 1s missing or could be about to miss with its .
sensors. This informatfion is then passed on to the next task.

-
: 2) PLAN/ALLOCATE: Given a 1ist of what coula be happening in the %
) environment, this module decfdes what 1s important to sense and how oo
: 1t will attempt to sense it. A 'plan' is created and passed on. 55
3) CONTROL: From the plan, this module guides and manages the 8

sensors, parameters, and data operators. The data collected are
passed onto the next phase. i:

4) INTERPRET: The collected data are added to the model of current o
situation. The new information is inferenced over and the updated =
¢ world model is passed on to the. ANTICIPATE task. .
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Unfortunately all of Garvey's work past this has been on the INTERPRETATION
task where he uses the Dempster-Schafer rules (covered later) to perform
evidential reasoning over a hierarchical world model of threat behavior.
Garvey assumes that data will be in symbolic form and thus his knowledge
representation and fusion mechanisms do not consider any non-symbolic levels
of sensory data (fe. image operator resuits). Possibly these non-symbolic
levels of sensory data are unusable until they are transformed into symboltic
data. Since Garvey has concentrated on the INTERPRETATICN task of his
design, the details of the PLANNING/ALLOCATE and CONTROL tasks are
unspecified. Much more work needs to be done before Garvey's system can
actually be called complete. Though Garvey's work appears to be the only
published research concerning a complete system design, many others have been
researching the evidential reasoning probiem. There appears to be a large
void of research in the 'camplete' system design and development aspects of
Multisource Information Fusion, and though the research on evidential
reasoning 1s necessary, its development must take into consideration the
interaction with the remainder of the system. This can only be done after
the design of other components has begun.
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Figure 1: Cycle of Multisensor Information Fusion
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EYIDENTIAL REASONING

3.1 Introductiop to Evidential Reasoping

Evidential reasoning has been the main focus of Multisource Information
Fusion systems research, because it 1s a defined subproblem of MSIF systems,
and because many feel that it is the heart of the MSIF system. Solving this
problem will allow partial implementations of systems and provide a starting
point for incremental development. An evidential reasoning system first
needs an internal model of the world on which to reason, deduce and
inference. Established world model designs (Rich 83) and their inferencing
mechanisms are too rigid and inflexible to truly reflect the real world, and
though current research efforts are expanding these designs to represent the
real world, much of this research has only been at the symbolic level. The
issue of how the non-symbolic levels of data are affected by uncertainty,
incampleteness, and inconsistency, and whether this effect will affect the
remaining mechanism, has yet to be addressed. (This issue {s more accurately
called the Data Fusion problem but we will use the terms interchangeably).

In order to reflect the real world, data fusion systems must be able to
represent the wide range of knowledge found throughout the real world. This
knowledge can be declarative or procedural, and due to the conditions under
which it was created, it will have an uncertainty associated with it.
Uncertainty of the knowledge must be represented, even to the point of being
fgnorant of the knowledge. The system can be ignorant of a certain fact, and
must be able to represent and work around this ignorance of {information
(however, knowing ignorance of a fact reveals a lack of total ignorance).
Finally, when quantities of information are combined into knowledge bases,
consistency becomes an issue. It is important also that the facts in the
knowledge base do not conflict. Methods such as belief and truth maintenance
systems do this kind of consistency checking.

The most important function of a data fusion system is to derive new
{nformatfion from known information. There are two ways to derive new
information:
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(1) Extrapolation uses procedural rules to derive new information from a
single piece of evidence, and

(2) Pooling combines multiple pieces of evidence.

A When pooling evidence to form new evidence there can be a problem with
interdependencies of different pieces of evidence. For example in a medical
diagnosis problem, two symptoms might occur pointing to the same disease.
However, this does not always mean a greater chance of the disease than if
only one of the symptoms had been observed. It is possible that the two
symptoms are dependent and always occur together. Different data fusion
systems deal with this dependency problem in different ways. Some even

B ignore it.

f; In the following sections three different approaches to data fusion are
analyzed and two new theories, each addressing a slightly different problem
in evidential reasoning are explained.

n
- 3.2 Bayvesiap Methods
Bayesian probabilities as used in Prospector by Duda et al (Duda, Hart and
Nilsson 1976) assigns strict probabilities for each piece of knowledge in the
x system. The probability of an event H 1s P(H), where P(H) is a real value
between 0 and 1. These probabilities must follow the statistical law that
- says the sum of all of the probabilities for all possible outcomes of a given
-~ event must be 1.
i
" The combination of the associated probabilities when facts are combined is
handled by Bayes theorem. Bayes theorem says that the probability of an
f’ event H based on some observed evidence E is given by:
7
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P(HIE) = P(EIH% * P(H)

E)
Likewise,
P(HIE) = c P(EIH) * P(H)
jZ:P(ElH ) * P(H,)
i i
i=1
wvhere:

P(EIHj) = the probability of the evidence E given Hj.
P(H) = the apriori probability of the event H.
K = the number of different possible outcomes for H.

There are some problems with using Bayes theorem for real world applications
however. It requires knowledge of all of the conditional probabilities, and
this information 1s often not available. Bayes theorem has 11imited

application in a world where we do not have access to the probabflities for
all of the events we are concerned with.

The Bayesian method also has problems with dependeﬁce of certain facts. By

definition Bayes theorem requires all evidences to be independent. This is
often not true in the real world.

Despite their shortfalls, Bayesian methods can be useful in 1imited problem
domains where much {nformation about the probabfiities of events are known.
Mineral exploration, which is the domain for Prospector, is one such area.

Charnfac (Charnfac, 1983) points out that for many expert systems
applications such as medical diagnosis, Bayesfan methods can be used witnout
the independence assumption. He shows that the interdependence of symptoms
will affect the probabilities for all dfseases equally and will therefore not
change the relative rankings of the diseases. He goes on to state that other

dependency problems can be addressed by combining the dependent evidences
into single states.

There are many systems that use derivatives of Bayesian for data fusion.
References to many of these are listed in the bibliography.
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. 3.3 MYCIN
“ !a In MYCIN, Shortliffe (Shortliffe, 1975) attempted to overcome the

shortcomings of Bayesian approaches while retaining the advantages, by using
a system that was an approximation to conditional probabilities. Each piece

::_, of information in MYCIN has associated with it a value between 0 and 1 which
is 1ts belief value:P(H). The disbelief value is 1-P(H). Any assertion
g about this fact has two measures associated with it. A measure of belief
(MB) 1s the measure of the decrease in disbelief of H as a result of a piece
::T': of evidence and a measure of disbelief (MD) {s a measure of the decrease in
* belief of H as a result of the evidence. MB is defined by:
1 : 1f P(H) =1
MB =
éf \\ﬂAXEP(HI§1$(:§H)] = P(H) . otherwise
. and MD {s defined by:
R 1 : 1f P(H) = 0
. MD =
i MINCECHIE), PUH)D. - PH) . otherelse
—
:EZ; In addition, a certainty factor is computed which is the measure of belief
minus the measure of disbelief. '
o
The above formulas handle extrapolation where a single piece of evidence
leads to a conclusion. To pool multiple pieces of evidence MYCIN uses the
following formulas:
= () : 1f MOCHIS,+S,] = 1
. MB[HISI+SZJ =
- B[Hlsll + LB[HISZJ * (l-MDCHISIJ) : otherwise
[

and,

0 : if BEHISI+SZJ =1
MD[HISI'!'SZJ =

\._\MD[HISIJ + MD[HISZJ * (l-MD[HlSIJ) : otherwise
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The reasoning system used in MYCIN allows uncertainty and allows us to 18
represent the lack of evidence for a certain conclusion. For example, if the
evidence does nothing to confirm a hypothesis then MB=G. If a pfece of

CAP AP A0 AV 2 4
D)

~ evidence does nothing to disprove a conclusion then MD=0. This method of

~ reasoning does, however, still have some shortcomings. We still have :'1
dependency probliems just as we dfd with the Bayesian methods but now we also -
have an added disadvantage in that the measures of belief and disbelfef are

[ not true probabilities and therefore cannot be expected to follow the laws of .ﬁ

: probabi11ties. These values are arbitrary, and at some level are assfgned by .

. a human. This poses a problem when i{nformation from different humans is KN
' used in the same system. Invariably they will use different scales in
assigning values.

PN
AR o

3.4 QDempster-Jchafer

[ P

The Dempster-Schafer theory (Barnett, 198l) uses the same {nterval concepts

~
N as MYCIN but extends them so that the probabilities are represented by mass f,";
> distribution functions. This theory provides rules for assfgning and
s manipulating these distributions. The intervals are defined as follows: :

ES(A)p P(A)] °:':
: where: S(A) is the degree of support, ]
g P(A) 1s the degree ‘of plausibility
h or the degree of failure to refute, .
8 P(A)~S(A) i{s the degree of ignorance.

=

- These values are computed using a mass distribution function which
N distributes a belief value over the entire range of possible hypotheses. The ::f-
N value for S(H) or the degree of .support for a given hypothesis H is equal to -
] the mass distribution function summed over all the hypotheses that imply H: .
w M
n "ot
: SCH) = 2 M(Eq)
M < -
- E{SH va
‘ 10 '
J N s A LAl ST A T T e T T A o T T I TN A T T T e T T




ehS)

n.:l'a

The value for P(H) or the plausibflity of H {s the sum of all of the
hypotheses that do not imply not (H):

P(H) = Zme,) =1 - S(H)
Eiﬂﬂ <0

To pool multiple pieces of evidence to support one hypothesis we use
Dempster's rule for combination:

1 E
MCH) = 1o¢ My(EL) ¥ My(E,)

E,/‘.EJ = H
where
K = :E Ml(Ei) * MZ(EJ)
EinEJ =0

The Dempster-Schafer thecrem, because it follows the law of probability,
gives us many nice properties. The combination rule is commutative and
associative so evidence can be combined i1n any order or grouping. Also, when
the probabilities are known exactly (when S(H) = P(H)) the Dempster-Schafer
law reduces to Bayes theorem.

The Dempster~Schafer theorem fills many of the needs for an {nformation
combination system and {s widely used today. References to many systems that
use the Dempster-Schafer theorem are 1isted in the bibliography.

3.5 Edge Merits

Slagle (1984) tn his battle system proposes an extension to the Bayesian and
MYCIN combination systems that takes into consideration the probability
assocfated with the rule as well as the evidence. These probabilities are
called edge merits, and are used to propagate the values of evidence through
rules as well as heuristic in rule conflict resolution. The edge merit for
an AND combination is defined as:

ECH)
P(E)
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The eage merit for an OR combination is defined as:
1=P(H)
1=-P(E)
Then, when the rule is fired, the. AND function returns the minimum of the

probabilities of its arguments and the OR function returns the maximum of its
arguments.

Edge Merits can be incorporated into a data fusion scheme that uses any of
the above methods.

3.6 Endorsements and Endorsers

Cohen and Grinberg (Cohen & Grinberg, 1983) developed a theory of heuristic
reasoning about uncertainty which {s symbolic (non-numerical) and uses some
of the concepts from Doyle's Truth Majntenance System. They propose a system
in which evidence for an {nference i{s associated with that inference and is
called an Endorsement for that inference (much 1ike Justifications in a Truth
Maintenance System). Thus, endorsements are records of the inferences which
have taken place, and Endorsers are defined as the computations that assert
these records. (See section on Non-monotonic Reasoning.) Unfortunately, no
further work on implementing a system based on the theory has been

published. Nonetheless, the theory 1s interesting enough to be briefly
explained below.

Cohen and Grinberg claim that the numerfcal approaches to reasoning under
uncertainty restrict the amount of heuristic knowledge about uncertainty and
evidences, knowledge that humans actually use. In numerical methods, a
number is merely a summary of the evidence which supports an {nference, and
actual evidence {s left unaccessible by the processes reasoning about future
inferences. There are two reasons why the evidence for an inference should
be accessible. First, a number cannot relate the type of evidence which
supports the belief. Some types of evidences will have more importances in
certain situations or contexts (i.e. corroborative evidence vs. contradictory
evidence), and knowing what kind of evidence is supporting an inference can
only aid the reasoning process. The second reason to make the evidence
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accessible 1s the bellef of an inference s based on the context of fits
evidence, which includes the current inference being reasoned about.
Therefore, evidence used for one inference is in a different context from
evidence used for another inference, and thus the belief in the evidence
{tself can be different between the two contexts. This becomes most
important when dealing with evidence which supports an inference being used
as evidence for a new inference (1.e. propagation; numerical methods can
often yield meaningless, and irrelevant belief values through propagation).

The certainty of an inference is represented by the strongest endorsement for
the inference. Therefore, an inference supported by one kind of endorsement
(eyewitness evidence) would have a higher certainty than {f the inference was
supported by less preferred evidence (circumstantial evidence). This means
that knowledge 1s needed to define and rank a characteristic (or primitive)
set of domain endorsements. Also, knowledge 1s needed to heuristically
propage endorsements over inferences (much 1ike degrees of belief are
numerically propagated over inferences (much 1ike degrees of belfef are
numerically propagated over inferences by combining functions), but the
propagaton must be sensitive to the context of the inference. Rules are
needed to propagate endorsements over {nferences, thus serving the same
purpose as combining functions, with each domain of expertise having numerous
idiosyneratic rules for covering special cases of endorsement propagation.

The Endorsement Theory 1s a fresh look at reasoning with uncertainty, but the
theory leaves many unanswered questions. The knowledge and structure of the
rules is unclear, as well as the final form of each inference. These holes
will have to be addressed before the theory can be implemented fnto a working
system. One benefit of the theory is that by retaining the endorsements of
an inference, one can discount the uncertainty of the evidence once the use
of the inference is known (i.e. discounting the uncertainty of one value when
it 1s averaged with other values). In this manner, a better grip on the
propagation of uncertainty is maintained, thus yfelding a more understandable
belief of the inferences.
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3.7 Non-Monotonic Logic

Traditional reasoning systems based upon predicate logics are considered
monotonic in that the number of statements known to be true is strictly
increasing over time. All newly added statements and newly proven theorems
cannot disprove any of the previously known knowledge in the system.
Unfortunately the world is not monotonic; but is i{ncomplete, constantly
changing, and in order to reason efficiently over complex problems,
assumptions (default reasoning) must be made about the world which can
possibly be proven incorrectly later in the reasoning process. From this,
the development of Non-Monotonic Logics has begun [Doyle and McDermott, 1979,
McDermott and Doyle, 19801, and though the theory is fairly new, its basic
concepts allow default-reasoning assumptions to be made and retracted without
disrupting the belief integrity of the world model.

Default reasoning allows the inclusfion of logical statements on the order of
"If X cannot be proven with you have right now, then conclude Y" in the
problem solving process. Thus assumptions can be made and considered true
until proven wrong. When a contradiction is found, backtracking is performed
to the a#sumption which caused the contradiction and then that statement and
all statements derived from it are withdrawn from the world model. This is
called dependency-dfirected backtracking [Stallman and Sussman, 1977].

Non-monotonic reasoning systems have two added components over common
inferencing systems. The first {s an Assumption mechanism which creates
assumptions based usually on defaults about partial solutfons'to aid in
solving the problem. The second component 1s a truth maintenance mechanism
which upon the discovery of a contradiction finds the faulting statement and
revises the truth of the world model by withdrawing the statement and all of
its dependents from the world. Most of the work in building non-monotonic
reasoning systems has been based on Doyle's Truth Maintenance Systems (TMS)
(Doyle 1979, adbl which is an implemented system that supports non-monotonic
reasoning by serving as a truth maintenance subsystem available to other
reasoning programs. The system does not generate new inferences but
maintafns the integrity and cons{stency across the statements produced by the
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reasoning program via {ts own dependency-dfrected backtracking mechan{sm.
Since TMS is the basis of most research {n non-monotonic reasoning, it {s
explained below.

In TMS, each statement {s called a 'node' and is, during the reasoning
process, efther believed to be true (IN) or not believed to be true (OUT).
OUT statements are not believed because there exists no reason for believing
them, or because none of the possible reasons for believing are currently
true. Associated with each node 1s a 1ist of justifications which reflects
hbw the validity of one node can depend on the validity of others, and of
which these are two kinds: Support Lists [SL ({n-nodes) (out-nodes)] and
Conditional .Proof [CP (consequent) (1n-node) (out-node)]l. Supports Lists are
the most common and its node 1s IN {f all of the fn-nodes are IN and all of
the out-nodes are OUT. If there are no in-nodes nor out-nodes then the
statement is considered a 'premise.' Conditional:Proofs are hypothetical
arguments which hold derived contradictions within the world.

As an example, suppose we are inferencing as to what type of animal IVAN is.
We will start out with:

Nl. Animal(IVAN) = Shark IN (SL ( ) (N2)]
N2. Animal{(IVAN) <> Shark ouT
N3. Animal(IVAN) <> Dog ouT

The system assumes that IVAN 1s a shark (node 1 is IN) since there is no
reason to belfeve it isn't. From these the system could infer that since
Ivan is a shark, then he can also swim:

N4. IVAN can swim IN st (N1) ()]
To show the maintenence system in action, assume that new information {s

introduced by statements N25 and N32 (from else where in the system) and
found to contradict:

NS. IVAN has fur IN (st (N25, N32) ()]

~aTh




The inference system realizes a contradiction in that sharks do not have fur
and so the dependency directed backtracking 1s triggered. In searching back,
the system realizes that N1 1s an assumption and could be causing the
contradiction. First, the contradictfon s marked:

N6. CONTRADICTION IN CSL (N1, Ns) ( )]

N7. NO-GOOD N1 IN [CP N6 (N1, N5) ( )]
The NO-GOOD node marks the proof that 1f N1 IVAN is a shark and N5 IVAN has
fur then N6 we have a contradiction. Without N7, we would never know that we
tried N1 {f we ever have to backtrack again. Next, we update the rest of the
world model and select a new assumption:

NL. Animal(IVAN) = Shark ouT, [SL ( ) (N2, N3)]

N2. Animal(IVAN) <> Shark IN [SL (N6) ( )]

N3. Animal(IVAN) = Dog IN [SL (N2) (N8)]
Nd. IVAN can swim ouT St (ND) ( )]

NS. Animal(IVAN) <> Dog ouT

N6. CONTRADICTION ouT [SL (N1, NS) ( )]

Now the inference mechanism can proceed and derive new deductions,
assumptions and contradictions.

There are a number of varfations to the TMS scheme [London 1978; Thompson,
1979; Ginsberg, 1984] but all are based on the same theoretical concepts and
all offer considerable improvements over other classical systems. Since the
inferencing and dependency directed backtracking 1s non-chronological, the
support relationships rather than the temporal orderings determine the
recovery fram an error and thus the appropriate erronious assumptions are
found quickly. Also the use of Conditional Proof (CP) structures allows the
causes of contradictions to be summarized and recorded, thus mistakes are §.
made only once. These two improvements provide an increase in efficiency D
large enough to offset the overhead of maintaining the justifications (though o
overhead would depend on implementation.) Difficulty in using TMS could
develop when marking an assumption, (i.e. IVAN 1s a shark) when all other
possibilities must be created and accounted for in the out-1ist of the
assumption:
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Nl. Animal(IVAN) = Shark IN £s1 () (N2, N3...n)]
N2. Animal(IVAN) <> Shark ouT
N3. Animal(IVAN) <> dog ouT

N4. Animal(IVAN) <> Platypus OUT

Possibly mechanisms can be created to introduce alternative assumptions, one
by one, as they are needed. This would greatly reduce overhead.

Using the Non-monotonic Logic provides great advantages over classical logics
and is an excellent augmentation to uncertainty inferencing systems. To
date, no one has yet published an implementation of a truth maintenance
system complete with uncertainty factors for its assumptions. Possibly, the
establishment of both (non-monotonic and uncertainty) theories will allow
development of an integrated theory. For a brief view of TMS see [Rich,
1983, Doyle, 1979al, and see [Doyle, 1979b] for an extended view. For the
mathematical background on Non-monotonic Logic, see [McDermott and Doyle,
1980; Doyle, and McDermotE 1979¢,1].

3.8 FEuzzy Jets and Logic

Fuzzy set theory is a well-developed mathematical theory which has not yet
been significantly exploited in A.I. systems. It provides an augmentation to
evidential reasoning systems which must reason with fuzzy qualified
statements such as: "most extremely fat women are very sweaty", where "most",
"fat", "sweaty", "extremely", and. "very" use fuzzy qualities (not exact
boundry between membership/non-membership of the quality.)

The theory of fuzzy sets is the development of a body of concepts and
techniques for systematically dealing with imprecise boundaries between
classes of objects. A fuzzy set is a class in which there is gradual
progression from membership to non-membership and each object in the set has
a grade of membership {ntermediate between 1 (full membership) and 0
(non-membership). Thus a conventional set §s a degenerate case of a fuzzy
set where only two grades of membership are allowed: 1, O.
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The need ot a fuzzy logic 1s due to the fuzzyness of the world. We often use
qualifiers in describing membership to a set such as: very, quite, almost,
slightly. In order for a system to reason about fuzzyness {t must first
represent it. Let U be our universe of discourse (e.g. set of integers) and
A be a fuzzy subset of U, which is characterized by a membership function:

VA = u-> 1[0, 1]

which associates with each element u of U a number vp(u) in the interval [0,
1], with va(u) representing the grade of membership of u in A,

Example: Let the universe of discourse be the set: U = [1, 2, 3, 4, 5...]
with u interpreted as "small", A fuzzy subset of U labeled "very" may be
defined as:

very small = (vy:up)+ (va:uz)+ (v3:ugz)+ (vg:ug)+ (vgiug)
= 1:1 + 1:2 + 0.5:3 + 0.25:4 + 0.05:5

where : is a ébparator to avoid confusion and + means union of the elements.

The members: 1, 2 of "small™ have a grade of 1, while the member 3 has a
grade of 0.5 (i.e. not as very small as 1 or 2 are, and so on.) From here a
number of theoretical concepts can be defined including classical set
definitions (i.e. containment) set operations (i.e. compliement, union),
relationships and other principles. For a more thorough account of fuzzy set
theory see [Zadeh, 1977].

Fuzzy logic 1s an extension of fuzzy set theory which provides a
representation for fuzzy quantifiers and truth-values, as well as provides a
set of translation and inference rules which can reason over the fuzzy
representation., Fuzzyness s represented through possibility distributions
Tx = the possibility distribution of X) which is a heuristically derived
measure of the semantic fuzzyness of linguistic vartables. Let F be a fuzzy
subset of U = {0, 1, 2...} and "X is F" represents F = Ty, or:

"X 1s F => Ty = F"
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Let
X is small => Ty = 1:0 + 1l:1 + 0.8:2 + 0.6:3 + 0.4:4 + 0.2:5.

Then
Poss{X = 0} =1
Poss{X = 1} =
!
Poss{X = 5} = 0.2

Where Poss{X = ul = vg(u) 1s the possibility that X may take u as a value.
So if I say "there 1s a small number of people left", the possibility that
there is only 2 left is Poss{X = 2} = vg(2) = 0.8. Possibility is different
from probability in that probabiiity is a measure of randomness while
possibility i1s a measure of semantic fuzzyness or imprecision in value.

A variable in fuzzy logic {s considered a 1inguistic variable whose values
are represented as words or sentences in a natural or synthetic language.
The value of each variable defines a possibility distribution in the domain
of the variable. For example: given the primary variable TRUE, its antonym
FALSE, and a finite set of modifiers and connectives such as and, or, not»

yery, more or less, extremely, etc... the 1inguistic value of TRUE may be
generated and represented as:

True False

not true not false

very true very false

not very true not very false

more or less true more or less false
[]
]
not true and not false
not very true and not very false
[}
4

The 11nguistic truth-value 1s a composition of possibility distributions of
the primary varfable and attached modifiers. Translation rules provide a
means of deriving the composite truth-values. Translation rules fall into
the four categories as explained below.
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1. Modification rule (not, very, more or less, etc.)

If XisF =>Ty=F
. Then X is mF => Tpy = F*

where m is a modifier of F and F* is a modification on F.

. Example: Let F = small, Ty =1:0 + 1:1 + 0.8:2 + 0.6:3 + 0.4:4 + 0.2:5,
Let m = very, and Ft = (F)2 (F squared)
Then:

X is very small ==> Ty, = (F)2 =
1:0 + 1:1 + 0.64:2 + 0.36:3 + 0.16:4 + 0.04:5

2. Conjunctive, disjunctive and implicational rules: Let F and G be fuzzy
subsets of U and W,

X{is F==>Ty=F and Y isG==>Ty =G
a. X 1s Fand Y 1s G ==> T(x,y) = F x G where:

ViFxG){usw) = min ( ve(u), vglw))

PN M SN

b. X 1s For Y 1s 6 ==> T(x,y) = FUG  (unfon)

! where:
A F = F x W (compliments)
G=GxU

V(F U G)(usw) = max (vp(u),vgiw))

- c. If X is F then Y 15 G ==> T(y/y) =F QG

where T(yx/y) 1s the conditional possibility distribution of
Y given X and

v(FeG)(usv) = Min(l, (1-vp(y) + vglw) ) )
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- Example: Let

F = SMALL = 1:1 + 0.6:2 + 0.1:3
ﬁ G = LARGE = 0.1:1 + 0.6:2 + 1:3
Then

o X is small and Y is large = T(x,y)

- = 0,1:(1,1) + 0.6:(1,2) + 1:(1,3) + 0.1:(2,1)

+0.6:(2,2) + 0.6:(2,3) + 0.1:(3,1)

< + 0.1:(302) + 0.1:(313)

i} 3. Quantification rule (many, few, several, all, some, etc...):

. If U= {u, ...upql, Q is a quantifier and
L F = visug + voiuz + ... + vpiup

o then "QX are F" (eg. "several X's are large") translates to

. Teount(F) = Q

:.':_', where N

- Teount(F) - Z vy

$=1

Example:
Let
'_ SEVERAL = 0:1 + 0.4:2 + 0.6:3 + 1:4 +
1:5 + 1:6 + 0.6:7 + 0.2:8
Then SEVERAL X's are LARGE = ¥

;" Y] t/‘.ﬁﬂ’cé[ito')

'i-: = 0:1 + 0.4:2 + 0.6:3 + 1:4 + 1:5

: + 1:6 + 0.6:7 + 0.2:8,

' 21
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:‘- where v ARGe(uj) 1s the grade of membership of the 1th value of X in the
-:: fuzzy set LARGE.
X 4. Truth qualification rule: Let t be a fuzzy truth-value like "“very
Y
N true", "quite true", etc. Then "It is t that X 1s F" {s expressed as:
3
‘.'
B X1is Fis t ==> Ty = F*
- where
vFH ) = velvptu))
: Example:
Bob is young is very true
. where:
L
" m = very --> F2
then
,Q
= Tage(Bob) = VtrueZ(Vyoungu))»
- where u i1s an element in the interval [0,100]
- assuming
o 2 YA\ =/
N Vyoung(u) = (-7— t{3F) )
o and
;2 Viryelw) = W2, w {s an element in the interval [0, 1]
'::' then
e , Rk -4
Tage(Bob)® [ 4 + (37/
5
3
o,
:: The translation rules above can be combined to provide the possibility
Ly distribution of composite propositions. From here, rules for inferencing
over the possibility distributions can be defined. Zadeh [Zadeh 793
;'-' tdentifies complex rules for projection and conjunction and combines them
> into a composite rule of inference which is a generalized version of the
classical modus ponens. Thus he claimed to be able to infer the possibility
. distribution of Y from the knowledge of X's possibflity distributions and
:':: from the conditional possibility distribution of Y given X, It is through
::- this composite rule of inference that Zadeh claims will expand the

-
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applicability of rule-based systems, giving them an interpolative (Fuzzy)
capability. Fuzzy logic 1s not an alternative to the other work in this
survey, but is an augmentive representation which can be integrated with
non-monotonic logic and evidential (uncertainty) reasoning. All of these
theories are complex and implementing an integrated system of them may be
close to impossible. Only after they are individually developed will that
question be answered. For the best coverage of fuzzy set and logic theory
see [Zadeh, 1977, Zadeh, 1979].

a v aY g Wy

e yoR. v
-




WA PO By o0t AR SNy § B T R it R R AR e A s P W Vod W W5 T pit MRttt A e S P LA S gt i il * bl 24

g
LA

4.0 PLANNING AND CONTROL

A plan is a partially ordered net of operations, each performable by a host
unit. Planning 1s the process of ordering the operators such that their
actions and resource needs do not conflict. In a Multisource Information
Fusion System there can be potentially high data rates, and thus sensor
resources and data processing controls needs to be managed effectively, with
the collection of important information being optimized and irrelevant data
filtered out. Decisions must be made as to what sources (of information) on
which to concentrate; what processes to run; when and where to run them; what
parameters to use; and which data to pass along. Memory, bus, processors and
time must all be allocated. The entire information collection process must
be planned out such to optimize the collection of vital information. Though
Garvey and Lowrance [Garvey and Lowrance, 1984] promote the instigation of
planning within a MSIF system, current planning strategies have yet to be
adopted for MSIF designs. Garvey has looked at the use of planning in vision
systems [Garvey, 1976, Ballard and Brown, 1982] but his approach is very high
level (1.e. searching for a telephone tn an office by first planning to find
the table and searching the table top). Very little work has been done in
applying automated planning strategies to plen the control of large MSIF
systems.

The current state-of-the-art in Automated Planning uses a hierarchy of goals
to create a plan [Sacerdoti, 19771, and meta-level knowledge to control the
plan creation [Hayes-Roth et al, 1979, Stefik, 198l]. Given a high level
goal with constraints, the goal is expanded into a partially ordered net of
(children) subgoals and actions which will achfeve the (parent) goal. Then
the subgoals are examined and compared tc an fnternal world model to see if
it is aiready true. If not, the net {s examined to see 1f restructuring the
plan will make the subgoal true and if not, the subgoal is made true by
expanding it into more subgoals. This process continues until all goals are
true. Intermitently the plan-net is examined for conflicts between goals
(such as attempting to use the same resources at the same time). Often
conflicts are resolved by reordering the plan-net. Goals are kept in
parallel until a necessary ordering can be determined [Sacerdoti, 19771, and
variables are not arbitrarily bound but have constraints (which describe the
value) placed on them until a correct value 1s found [Stefik, 1981 ad&bl.
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R; The processes involved in planning are quite simple; the difficulty 1s in

® placing knowledge about the host unit's (in MSIF a source system controller)
!l actions into a planning system operator. The effects prerequisites

- constraints on variable bindings of when, how, and why (intentions) to use
[ the action and much more must be acquired from all possible actions of the
o host unit. Incomplete or incorrect knowledge can cripple the planning

process.

At the end of the planning process the final plan can progress through a
e number of optimization and interpretation processes [Kempf, 1983] which will
’ transform the plan into a program for the controller to follow. Possibly the

o controller will have these processes built into it and will intelliigently use
;} the plan as a knowledge base which guides the controller's actions [Budenske,
b 1984].

The duty of the controller 1s to manage the operation of the sensors. With
the high flux of possible data to be collected, it i{s desirable to focus the
sensors on portions of the external world where pertinent information {s more

l‘ Tikely to be extracted. Not only can the high data rate be cut by selective
sensing but also by selective processing of the raw data. The controller
e will receive a plan from the planning module and will follow this plan

allocating system resources managing sensors executing processes and passing
- the resulting knowledge on to the data fusion module. Possibly, the

g controller will also control the data fusion and inferencing processes
through assignment of initial probabilities:uncertainties and other parameter
adjustments. The exact methods of planning and control have yet to be fully
examined and thus provide an excellent area for fruitful extension of the
state-of-the-art.
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5.0 SUMMARY

The research in Multisource Information Fusion systems i1s very lacking. The
majority of work has been in the area of evidential reasoning with the tasks
of planning and control being ignored as well as the overall design of an
integrated system. The problems in evidential reasoning have been approached
through different inferencing mechanisms and logical theories, all of which
are still in the early periods of development. The integration of some of
the mechanisms and logical theories could greatly fincrease the evidential
reasoning capabilities of a MSIF system, but these mechanisms and theories
must be furthered developed before integratfon can occur.
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ABSTRACT

For some time, there has been a growing awareness among the Image Understanding
(IU) research community that the traditional approaches were not yielding
satisfactory results in terms of desired performance. This is strongly related
to the emphasis 1n traditional IU on segmenting and characterizing distinct
regions or edge segments. Relationships between regions have not received much
attention.

In contrast, researchers in human perceptual processes have long been aware of
the importance of the use of relationships between regions, leading to grouping
of regions. This capability to form groups of highly related regions is a
fundamental (low-level) form of structuring the information in an image.
Further work has shown that humans make extensive use of the symmetry
properties of image configurations in building up internal symbolic
representations of the perceived images. It has become apparent that this
capability 1s not a trivial one, and that human facility in working with

structural groupings and symmetric relations develops only in the latter stages
of childhood. )

These factors provide strong argument that one of the major needs of image
understanding systems now is a robust, generic method for representing and
processing both group-oriented and symmetry-oriented structural properties of
images. This paper fllustrates a method for representing the low-level
(grouping) structure of segmented images. The structuring process is
thoroughly based on an implementation of the factors which a dominant role in
human perceptual grouping processes: similarity, proximity, containment, and
similar dfrectionality.

The implementation scheme has been applied to both natural (FLIR) and
artificial (Bongard) images. The resulting Hierarchal Relational Structures

(HRS) provide an organizing schema for grouping related regfons for further
processing. The HRS further enables a potentially simpler fom of
representation for higher-order relationships (such as symmetry), and provides
a succinct structure to which meaning or object/feature identification
processes can be applied.
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ABSTRACT
l; For some time, there has been a growing awareness among the Image Understanding
.. (IU) research community that the traditional approaches were not yielding
tj- satisfactory results in terms of desired performance. This is strongly related

to the emphasis fn traditional IU on segmenting and characterizing distinct
regions or edge segments. Relationships between regions have not received much
attention.

In contrast, researchers in human perceptual processes have long been aware of
the importance of the use of relationships between regions, leading to grouping
‘ of regions, This capability to form groups of highly related regions {s a

y ‘ fundamental (low-level) form of structuring the information in an image.

Further work has shown that humans make extensive use of the symmetry
properties of image configurations in building up internal symbolic
representations of the perceived images. It has become apparent that this
capability 1s not a trivial one, and that human facility in working with

structural groupings and symmetric relations develops only in the latter stages
of childhood.

These factors provide strong argument that one of the major needs of image
understanding systems now is a robust, generic method for representing and
processfing both group-oriented and symmetry-oriented structural properties of
images. This paper illustrates a method for representing the low-level
(grouping) structure of segmented images. The structuring process is
thoroughly based on an impiementation of the factors which a dominant role in
human perceptual grouping processes: similarity, proximity, containment, and
similar directionaliity.

The implementation scheme has been applied to both natural (FLIR) and
artificial (Bongard) images. The resulting Hierarchal Relational Structures
(HRS) provide an organfzing schema for grouping related regions for further
processing. The HRS further enables a potentially simpler form of

representation for higher-order relationships (such as symmetry), and provides
a succinct structure to which meaning or object/feature identification
processes can be applied.
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1.0

INIRODUCTION: THE NATURE OF THE PROBLEM

The ultimate goal of machine visual perception is to create a complete,

mul tiaspect symbolic representation of the "“world"™ corresponding to the
image. This capability would then lead to further capabilities, e.g., an
ability to "image" the same scenario fram other perspectives, or by
manupulating the internal symbolic representation, to "{mage™ potential
changes in the scene, as shown in Figure 1.1. These desired capabilities
for machine perception correspond to known human capabiliities in perception
and imagery.

This paper presents an approach to improving machine perception
capabiiites, or machine image understanding (IU), by drawing substantially
from known aspects of human perceptual processes. First, though, it is
worthwhile to briefly note the status of machine IU performance.
Currently, IU systems can produce "segmented images" from raw image data.
(See,e.g., Ballard and Brown, 1982; Marr, 1982]. These segmented images
are usually one of two sorts: those which show all the 1ines or edges
which can be found in the original image, and those which show all
contiguous regions., Methods which combine these approaches are also
avaflable. [E.g., Milgram, 19791 For the purpose of demonstrating the
concept, we will use region-segmented images, but the problems and methods
will be applicable to either type of segmented image.

Once a region-segmented image s obtained, IU systems tend to characterize
each of the segmented regions as much as possible [Panda, 1978; Ballard and
Brown, 1982]. Typically this involves obtaining values for region area and
extent, describing the shape, color, or texture of the region, and in other
ways characterizing the attributes or content of the region. Recent work
has emphasized methods which would yield depth or orientation
characteristics of the region [Ballard and Brown, 198l; Barrow and
Tenenbaum, 19811],

Each of the three major stages discussed above; the original image, the
segmented image, and the more symbolically represented 2-D or 2-1/2-0
surface knowledge (from the characterized regfons) (Marr, 1976], comprises




a major form of knowledge representation about the original scene (from which
the initial image was taken) [(Barrow and Tenenbaum, 1981]. Minimally, two more
levels of knowledge representation are desired. The characterized surfaces or
regions described above need to be represented in a different internal form
which clearly makes explficity the 3-D nature of objects, features, and the
background or terrain. In many cases, this will involve a form of geametric
3-D object-centered representation, where each object can be uniquely
represented with full symbolic description of its shape. (Excellent work has
been done along these lines by Brooks et al, and by other groups of
investigators). [Brooks, Greiner, and Binford, 1979; Brooks, 1981; Brooks,
1983], Other representation schemas may be used for background, terrain,
and/or extended terrain features [Sedgwick, 1983].

This does not complete the process of image understanding. While a 3-D
geometric representation of a perceived scene is necessary, it must be
supplemented greatly by knowledge about the fdentification and meaning of
each object, feature, and aspect of terrain. At this level, objects would
be represented in terms of function rather than form. Functionally-related
object classes would exist, as would (potentially) schemas for events or
object configurations [Tsotos, 1984; Havens and Mackworth, 19831,

Thus, the traditional approach to conceptually designing an image
understanding system uses the idea of multfple knowledge representation
levels, hierarchically arranged (as shown in Fig., 1.2). The major levels

of knowledge representation are (roughly): original image, segmented
image, symbolic representation and characterization of the segmented image,
(1ncluding depth and orientaton information), 3-D geometric form-based
representation, and a topmost "meaning" or "interpretation™ level. Each of
these levels, of course, can obtain several different sub-levels.

There are several major bottlenecks which 1ie between the current
state~of~the~art in machine IU and the desired capabilities for machine
IU. These bottlenecks appear to be strongly associated with major
transitions in the levels of representation (shown in Fig. 1.2).
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Figure 1.2 Traditional machine IU systems are strongly hierarchical., Each
hierarchical level corresponds to a major representation
formalism for knowledge associated with the image.




There has been, in recent years, an enormous amount of work aimed at
facilitating the transition between these representation levels.
Interesting and useful 2pproaches have been suggested, each with greater or
lessor degrees of applicability to generic IU systems [Brooks, Greiner, and
Binford, 1979; Brooks, 1981, 1983; Binford, 1982 (and references contained
therein); Oshima, 19831].

In most recent years, effort has focused on improved characterization of
depth or otientation which can be obtained from many sources (shape from
texture [Kander, 1979; Stevens, 198l; Beck, Prazalny, and Rosenfeld, 19831,
shape fram shading [Barrow and Tenenbaum, 1981; Smith, 1983], and other
approaches [Stevens, 198l; Haber, 1983], However, an awareness is emerging
that these technfques, no matter how refined and sophisticated they become,
will in and of themselves be insufficient to enable fnter-level
transitions, particularly the crucial transition fram symbolic 2-D to 3-D
representation [(Witkin and Tenenbaum, 1983; Lowe and Binford, 1981, Lowe,
1984).

A major theme of this paper (and the theme of some recent efforts by other
favestigators) is that the previous approaches place a heavy reliance on
extracting characteristics (content) of regions in an image. This paper
defines an approach to image understanding which incorporate more fully the
relationships between the regions, and defines a higher-level concept:

that of structure in the image. The "structure™ which will be the subject
of this paper may be preliminarily defined as "the interrelation of parts
as domfnated by the general character of the whole” [Webster's Third New
International Dictionaryl.

The goal of this paper is to examine some aspects of the role of structure

in human image understanding, and to extract fram our knowledge of human

visual processes certain capabilities which could potentially play a strong

role {n machine IU. It also shows how these capabilities could influence

the overall performance of machine IU, and {1lustrates the proposed use of

structure 1n machine visual perception for both artificial and real images.
3
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2,0 THE RCLE OF STRUCTURE IN HUMAN VISUAL PERCEPTION.

i_......ﬁ

A premise for this section is that humans perceive and describe objects and
scenes in terms of four major aspects: content, context, structure, and
meaning. This simplified premise is offered primarily as an organizing
schemata so that progress and capabjlities of machine image understanding
can be compared with human abflities.

*

“:’!“A:IL"‘_ -

Pk}

- Briefly each of these terms means the following:

o Content - Description of an object (or segmented region fn a scene) 1n
terms of i1ts attributes, e.g.,» shape, texture color, and size.

o Context - Description of the relationships between an object or
segmented region) and nefghboring objects or regions. Cammon
relationships to consider are the so called "Gestalt" relationships:

proximity, similarity, containment (or enclosure), and directionality.

o Structure - Description of an object (or configuration of objects or
regions) in terms of the organization which describes how, overall, the
interrelations of the parts contribute to perception of the whole.

il o Meaning - Naming, interpretation, and/or connotation of a perceived
' object or region, or "configuration"™ of objects or regions. Meaning
can be related to the specificity of naming, or to the connotated
properties of the named object.

A substantial body research has shown that humans work towards and create
an internal symbolic representation of objects or scenes. This internal :?W
representation contains content, context, structure, and meaning for !
perceived and imaged scenes.

Although it is by no means clear that humans operate with the same
hierarchical representation structure as has been proposed for machine IU ~
systems, it 1s well known that humans have the capability to symbolically

> represent and interpret different levels or forms of visually-related -
i know ledge: -




1. Representation of 2-D charactersitics of a perceived object or
scene. This is most obvious 1n the case of abstract 1ine drawings
or figures where no three~-dimensional information i{s intended.
[vernon, 1953; Kohler, 1947; Koffka, 1935]

2. Internal representation of the three-dimensional nature of a
percefved object or scene. Our ability to mentally manipulate such
internal three-dimensional models has been amply demonstrated, most
notably by the experiments of Shepard [Shepard, 1971].

3. Representation of classes of objects and schemas of events.
Human facility for organizing objects and events 1s well known, and
has formed a basis for significant research in artificial
intelligence and cognitive science [See, e.g., Minsky, 1975].

These human capabilities evolve over the course of childhood. Work by
Binet and Simon showed that the evolution of scene understanding abilities
in children developed with age [Binet, 1916]. At three years of age,
children could enumerate the objects in a scene. By the age of seven, they
could describe objects. Between the ages of seven and fifteen, they
developed the abiiity to describe events and the the relationships between
objects and persons. Generally, by the age of eleven, they were able to
interpret the picture as a whole [Binet, 1916; Vernon, 19531,

There is some similarity between the evolution of abilities in children and
the process by which adults identify a figure. Adults first have a vague
"feeling of something™, followed by a vague impression of some indefinite
object. This is followed by the. "generic object stage", at which certain
parts of the object stand out more clearly. The next stage (the "specific
object stage") 1s one in which the observer perceives an organization of
the parts 1n the object or figure, while the background fades out. In the
last stage, naming of the object occurs [Vernon, 1953].




These stages, and the evolution of perceptual abilities described above,
could be approximately described as a procession of capabilities
corresponding to the four aspects of perception given earlier: content,
context, structure, and meaning.

Early work by researchers in perception showed that the tendency to group
objects or regions based on laws of Pragnanz (similarity, proximity,
containment, and directionality) played an extremely important role in
human perception [Koffka, 1935; Kohler, 1947; Beck, 1966, 1972; Olson &
Attreave, 1970; Rock & Brosgole, 1964]. These studies were later advanced
to show that humans organized perception so as to create an object or
configuration based representation that yielded maximal symmetry under
group-theoretic symmetry operators [Garner, 1970; :Palmer, 1983 (and
references contained therein)l.

The perception of structure in abstract figure drawings is an ability which
increases with age 1n children. At the age of three and one half to four
years, children can recognize and reproduce the difference between open and
closed figures, and from the age of four they begin to recognize the

difference in rectilinear and curved figures, and to differentiate among
such figure types as squares and triangles. At this age, they also begin
to be able to understand object relations [Piaget and Inhelder, 1948].

Young children tend to copy exact details of a complex 1ine drawing,
Juxtaposed without any idea of the pattern as a whole. They have no
concept of the relationships among the detafls or between detatils and
overall structure. By the age of nine to ten years, children are able to
fdentify the main outlfnes of structure in an abstract line drawing. It is
interesting that naming and verbal analysis of structure appear very
involved 1n the child's abjlity to extract structural components. By the
age of eleven to twelve years, children are able to perceive main outliines
of structure, supporting or subsidiary interrelations, and are able to

integrate details in a manner corresponding to the original image [Vernon,
19531,
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To what extent is structure an important factor in human visual

perception? Many indications imply that structure plays a very important
role. During this discussion, it will be necessary to distinguish between
two levels of structure, will be referred to as "low-level™ and
"high-level™ structure. Low-level structure §s the organ1zat1on.1mposed on
a figure or scene by grouping related objects or regions together according
to the Laws of Pragnanz [Kohler, 1947]. High-level structure will be a
reworking of the groupings found by low-level structure as to perceive the
maximal symmetry of a configuration [Palmer, 1983]1. This symmetry may be
efther translational, regarding a repeated pattern or figure, or it may
involve rotation or reflection about a point or axis.

There 1s some evidence that the role of structure is to aid in the human
capability to form internal symbolic representatons of images. This stored
internal symbolic representation is what would allow us to recreate scenes
once they have been viewed, or to create new or similar scenes [See, e.g.;
Shepard, 1978]. An {llustration of this 1s that humans tend to draw a
simplified version of a complex, abstract 1ine drawing which they are asked
to reproduce from memory. The line drawing produced is not only simpier
than the original, 1t also has a higher degree of symmetry than the
original drawing [Vernon, 1953; Shepard, 19781.

Recent research has shown that the right hemisphere of the human brafin {s
highly specialized (in right-handed persons) to handle a wide variety of
spatial relational processing. Damage to this hemisphere can result in
severely impaired capabilitifes to interpret and understand fmagery.
Overall, research in localization of brain functioning supports the view
that relationships between regions, and {nformation which can be drawn from

these relationships (structure) is fundamental to human visual perception
[Kimura and Durford, 1974; Levy et al, 19831].
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3.0 THE ROLE OF STRUCTURE IN MACHINE VISUAL PERCEPTION

As stated in the Introduction section, the goal of machine visual
perception 1s to construct a complete, accurate, multi-aspect symbolic
representaton of the "world" perceived through the imaging sensor. This
E would enable an intelligent machine to perform further operations (which
: might be somewhat akin to imagery). 1In order to be able to construct a

useful 1internal symbolic representation, the machine would have to have
% image understanding capabilities similar to those described earlier for
: humans. In the context of machine image understanding these are:

o Content - Segmentation of the input image into appropriate regions,
and characterfization of these regions in terms of size, shape, color,
texture, and other useful attributes.

o Context - Internal representation of the simple interrelationships
between regfons. Important relations to take into account would include
similarity, proximity, containment (or enclosure), and directionality.

o Structure -~ Two levels of structure are appropriate even at the 2-D
representation level. .These are:

- Low-level structure - Grouping "related regions" so that

they may symbolically be considered as forming parts of a
"whole",

- High-level structure - Determine the group-theoretic f:
operators which may describe a configuration or pattern :
expressed in single regions or groups of regions. This may =
fnvoive fdentifying points or axes of symmetry., or .
transiational 1invariance for repeated forms. This structure :
must be robust enough to account for effects induced by ;a
perspective.




..........
.

o Meaning - Recognize, classify, and identify important objects and
features. Associate contextual {nformation with certain object classes
(e.g.» capabilities of or uses for certain objects). Interpret events, or
"meaningful® configurations of objects or features.

These four desired capabilities of image understanding systems are geared
towards enabling the system to contruct an internal symbolic representation
of the world corresponding to the percefved fmage. It is still 1ikely that

at least three major levels of representation will be necessary. These
three levels would be:

o 2=D Symbolic - Symbolic representation of the segmented regions and their
attributes (content), their relatfonships (context), and both Tow- and
high-level structures describing the configurations of the regions.

o 3=D Form-Based - Representation of the probable three-dimensional forms
which yleld the image obtained by the sensor. This can include
object-centered representations for segmented objects, and terrain-based
information for representation of the background or terrafn.

o Objgct/Feature Classes ~ Representation of all identifying and
connotative Information associated with the perceived objects, features.,
and terrain.

In comparison with the desired capabilities of machine visual perception
systems, existing systems have exceedingly 1imited capabilities. Current
machine vision systems focus on object identification where the domain of
objects under consideration is relatively small [Binford, 1982; Rosenfeld,
1983]. These systems rely to a great extent on object attributes, such as
size, shape, intensity or color, texture, and velocity (for real time
vision systems). Some systems make use of relationships between dffferent
regions or edges of an object. In these cases, the type of relational
information extracted is very limited, and does not inlcude the full range
of information that comprises the domain of the Laws of :Pragnanz. The
relationships considered also tend to be highly specific to the object

...............
..............................
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domain, and Tack the generality of human perceptual groupings [Brooks,
1981, 1983; Oshima, 1983; Shirai, 1978]. No active systems take into
account the full npature of structure in constructing internal symbolic
representations of the perceived image, although recent work by Lowe
represents a significant step in this direction [Lowe and Binford, 1981;
. Lowe, 1984]1. Earlier work in visual analogic relations is not strong

' enough to form a substantial base for image understanding [Evans, 1968].

An alternative organization for a machine image understanding system is
shown in Fig. 3.1. While this proposed system design maintains the
fundamentally hierarchical approach of early designs for IU systems (Barrow
and Tenenbaum, 19811, 1t departs radically from earlier systems through
inclusion of context (relationships), and structure at the crucial 2-D (or
E 2-1/20) and 3-D symbolic levels. In this sense, there 1s somewhat of an
analogy to the lateralization of visual processes in the human brain.

In the 2-1/2~D level, content information leads to context, from which
low-level structure can be gained. Structure provides groupings of regions
which facilitate object/feature characterization and identification. Using
both 2~1/2-D content and structure information, a fuller interpretation of
the 3-D characteristics of an object or feature is possible. At the 3-D
level also, the contextual knowledge is facilitated by both 2-1/2-D context
and structure. Finally, the 2-1/2-D structure leads into 3-D structure,
which will include full 3-D symmetry understanding.

10
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4.0 CAPABILITIES ENABLED THROUGH CONSIDERATION OF STRUCTURE IN IMAGES

The structure of regions fn an image plays an important role in enabling
perceptual processes and image understanding. By representing the
structure of segmented regions, as well as the attributes of and
relationships between these regions, a new form of information is made
available to the knowledge bases and inference engines which would operate
on the image. For the remainder of this paper, the emphasis will be on the
representation of low-level (grouping) structure for images, and on the
knowledge which can be gained fram this structural representation through
inference.

In brief, the mechanism for evolving a representation of low-level (Gestalt
grouping) structure is as follows: Each segmented region in an image is
symbolically represented by a "node", which will have appended to it
content and context information. A parameterized form of the Gestalt "Laws
of Pragnanz" is used to determine the relationships between nodes
(contextual information). (These relationships are detailed in Table

4.1.) This allows the most "closely-related" nodes to be identified and
grouped together. A. "cluster node" symbolically represents this grouping
of closely-related nodes. Content and context informacfor for the new
cluster node 1s calculated. The process {s repeated, creating higher
levels of cluster nodes, until the entire image (or segmented object) is
represented by only a few cluster nodes. Decomposing the hierarchical
cluster-node structure allows access to the components of each group of
nodes. The result of this process is that regions which would be grouped
together by our human perceptual processes are similarly grouped together
by the structural process (referred to as Hierarchical Regfon Structure
(HRS)).,

An example 1s shown in Fig. 4.1. Fig. 4.1(a) shows a Forward-Looking
InfraRed (FLIR) image of a road. We would naturally group together the two &
semi-paraliel strips together as a structural unit, or "configuration”.
Moreover, we would naturally consider the left and right (bright) sides
bordering the road each to be "units" ({n a symbolic sense) despite the
fact that there are three regions ~

11
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corresponding to the left-hand road border, and two regions on the right.
Current image processing algorithms can segment out these regions (to
greater or lesser degrees of satisfaction, depending on the methods used),
and characterize each of the segmented regions. However, a mechanism to
relate the segmented road regions together into a single structural whole
is not a part of generic IU technology. In this sense, the grouping
offered by the HRS approach represents a strong development in IU
capabflities.

Fig. 4.1 (b) shows a segmented image based on Fig. 4.1 (a). Fig. 4.1l(¢c)
shows the part of the Hierarchical Regfon Structure which relates to the
road area. The hatched nodes at the bottam of Fig. 4.1(c) correspond to
specific regions in the segmented image, shown hatched in Fig. 4.1(d). The
three left-side border road regfons are grouped together (using high-value
relations of similarity » proximity, and similar direction), as are the two
right-side border regions. These form the two cluster nodes which can be
seen at the second level fram the bottam of Fig. 4.1(c). These two nodes
are grouped together on the basis of their similarity and similar
directionality, and form a new cluster node (third level fraom bottom).

This node joins with a cluster node representing the interior of the region

to form an overall road node (one level down from the top). Similar
processes would group together the regions on the right and left sides of

the region.

Using this hierarchical structure, to which content and context {nformation
would be appended, an inference engine could search among the top layers of
the structure for a cluster node which has characteristics and internal
relationships (context) corresponding to the known content and context of a
road. A strong advantage of this approach {s that at this point, all of
the road regions would be symbolically 1inked together and could be treated
as a unit, thus enabling further high level processing.

12
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Figs. 4.2 - 4.4 further 1l1lustrate the capabilities offered by a
representation of low-level structure in an image, as well as the
limitations inherent in this approach. These figures are all based on
Figs. 88, 89 and 90 1n Bongard's one hundred "Problems for the Recognition
Program" [Bongard, 1970]. Each of the original problems consisted of two
sets of six small figures each, .The goal 1n each case was to determine
what unique characteristic described one set of figures which
differentiated 1t from the other set of figures in the same problem. For
succinctness, I have used only three of the figures of each of the sets,
instead of the original six. Each of the original figures used for
discussion here is shown in the left-hand column, and a hierarchical
structural representation for it {s shown on the right.

In the structural representation, each node which is a terminatfon of the
downward-pofnting tree-1ike structure represents one of the white or black
ellipses 1n the original figure. (The notations of "W" for white and "B"
for black are added underneath the terminal nodes of the hierarchical
structure in order to facilitate comparison with the original.)

The figures in the first set of Fig. 4.2 each have three ellipses, those in
the second set of the same figure each have five ellipses. In this case,
the addition of an hierarchal structure which describes the structural
groupings of each of the figures does 1ittle to help. Differentiation
between the two sets can be based on content alone. Such differentiation
1s well within the province of traditional image understanding systems,
which could extract the content of each figure, and infer the nature of the
set definitions: three or five ellipses per set, respectively.

Fig. 4.3 presents a slightly more complex situation. In this case, the
content of each figure is not sufficient to fully differentiate the sets.
Some figures have three ellipses, others five, others as much as fifteen.
The key feature here is the grouping of the ellipses together. This is
shown vividly in the accompanying hierarchical structures. Each of the
structures for the first set has three major

13
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"cluster nodes" (in an expanded use of the term, since sometimes a "cluster
node" will correspond to a single node of the original image). Each of the
structures 1n the second set has five cluster nodes. In each case, the
structures are built using heuristics and processes based on the Gestalt
Laws of .Pragnanz. For simple figures such as these, the resulting )
structures are very strongly determined, with 1ittle ambiguity in terms of
the groups which will be formed. The information produced by this
Gestalt-1ike grouping or structuring process presents a major step beyond

that provided by traditional IU systems.

Despite the clear advantage that such structural groupings offer, it is
important to be clear on the limitations of such information. It is
necessary to understand that the fnformation offered by the low-level
structural process is devoid of both meaning and representation of
symmetry. These limitations are fllustrated by Fig. 4.4. Here, although
the hierarchical structure clearly groups together the adjacent white
ellipses before clustering them with the black ellipses, it s by no means
clear that this {s sufficient to distfnguish between the two sets. The
distinguishing criterion in this case (three groups of white ellipses in
the first set, four in the other), would have to be made at a higher
inferential level than that of the previous figure. Thus, while low-level
structuring offers a substantial body of information in a form which
enables rapid processing, it is only another step in developing mature IU
systems; it is not by itself sufficient to solve all IU problems.
Nevertheless, the advantages offered by the use of low-level structure in
IU systems 1s so strong that this area warrants active attention.

14

-
-

A
'
™




]

L g

R A N S e

v

TeeY

oY

. , 'Abo|eue 3yy 40 UOLIN|OS B|QRUD A|Lpeas 03 JudLd
“L44nsul 413531 Aq *SL BUNIdNUIS [3A3|-MO| YJLYM uL (06 WA|goud ‘paebuog) wajqoad Abojeue [ensLA y ¢ 34nbi4

e Andt B S
LR ‘e A el Sl el S s

-1- .

e

e
-.l'n'-
N

*d

..f.u




e

5.0 CONCLUSION: ASSESSMENT AND IMPLICATIONS

A

. "4‘:) l;‘(_
P o0

For some time, there has been a growing awareness among the image

understanding resear wunity that the traditional approaches were not +
ylelding satisfactory raesults in terms of desired performance. These
traditional approaches have been heavily welighted towards obtaining the x|
characteristics of segmented regions. Even the more recent work, leading

potentially to realization of Marr's 2-1/2-D primal sketch, has simply

S

focused on obtaining depth or orfentation cues about regions, which is an
- elaboration of the characterization process. i

In contrast to this approach, researchers in human perceptual processes
have long been aware of the importance of the use of relationships between s
regions, leading to grouping of regions. This capability to form groups of
highly related regions is a fundamental (low-level) form of structuring the

",

"
&

information in an image. Further work showed that humans make extensive
use of the symmetry properties of image configurations in building up

v

internal symbolic representations of the perceived images. It has become
apparent that this capability is not a trivial one, and that human ability -
in working with structural groupings and symmetric relations develops only ,
in the latter stages of childhood,

- These factors provide strong argument that one of the major needs of image =
understanding systems now is a robust, generic method for representing and -
< processing both group-oriented and symmetry-orfented structural properties -
of images. This paper {1lustrates a method for representing the low-level
& (grouping) structure of segmented images. The structuring process is
’ thoroughly based on an implementation of the factors which a dominant role
in human perceptual grouping processes: similarity, proximity,
containment, and similar directionality.

The implementation scheme has been applied to both natural (FLIR) and B
artifictal (Bongard) images. .The resulting Hierarchal Relational
Structures provide an organfzing schema for groupfng related regfons for ?}
further processing. 1The HRS further enables a potentially simpler form

15
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of representation for higher-order relationships (such as symmetry), and
provides a succinct structure to which meaning or object/feature
identification processes can be applied.

While this paper has brought up the need for representing higher-order
(symmetry-based) structure, it has not attempted to demonstrate a form or
mechanism for building this representation. The factors which might be
most fruitful yields form this work are the realizations that first, image
structure representations store a valuable form of image-based
information. Second, investigation into human visual processes can
continue to yleld valuable insights and ideas for generic,
machine-implemented Image understanding systems. .Thirdly, while structure
may be rightly regarded as a valuable component in image description, it is
not to be confused with interpretation or understanding of the image. In
this perspective, the use of structure in machine image understanding needs
to be regarded as one among the many possible elements which can ultimately
enable full image understanding.
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ABSTRACT

This paper describes a knowledge-based image processing system for the
segnentation of outdoor scenes. The system consists of four main units which
perform the tasks of: goal determination, preprocessing, segmentation, and
region evaluation. The system uses information on the mission goals, sensor
characteristics, and data measured from the scene, as well as knowledge about
the performance of the 1ndividual image processing operators.

The hierarchical image understanding system described here has as {ts primary
goal to segment visual and infrared imagery of outdoor scenes. It performs
image or region resegmentation and/or reprocessing by intelligently deciding
what image processing operations to use, "measure” the effects on the current
image and make a decision as to what the next operation should be. The system
has been implemented in a Symbolics 3600 as a collection of production rules
acting on a blackboard-type scene knowledge representation called Archival
Scene Model. Representative results are described in the paper.
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1.0 INTRODUCTION

One of the fundamental challenges in computer vision is obtaining useful
segmentation. In regifon based segmentation, the goal {s to outline regions
which accurately correspond to actual structures in the scene. The quality of
the segmentation is crucial to effective machine image understanding. Without
the capability for good segmentation of physically meaningful regions, even the
most intelligent processing cannot achieve satisfactory scene interpretation.

The partitioning of a scene into regions based on additional knowledge, such as
range or other ancillary knowledge, can yield very meaningful scene
interpretation results [1]. Traditional state-of-the-art image segmentors use
some background adaptive technique and threshold in order to meet their
requirements. However, such techniques are "b1ind"™ in their adaptation and
could be severely affected by object size or sensor characteristics
instability.

In the past, the most useful segmentation results have been achieved using
model driven techniques which were tuned to work for specific situations.
These segmentation methods work well for very focused applications such as
finding bright targets in low clutter scenes. The performance of these
segmentors goes down rapidly, however, when they have to deal with a wider
range of imagery. There are many applications where computer vision systems
have to function over a wide range of situations. For example, the computer
vision system for an autonamous land vehicle must function in a variety of
situations which will be affected by different sensors, terrains, weather
conditions, and even the time of day. There are currently no segmentation
methods that work well over a wide variety of situations.

A way to improve segmentation results over a wide range of scenarios 1s to use
Al techniques to bring more knowledge to bear on the problem. Using Al
techniques, such as knowledge on the terrain or weather conditons can guide and
control the segmentation process. This knowledge can come from other sensors,
the processing results from previous frames, or even from pre-mission training.
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Various knowledge driven image processing techniques have been studied by

many. Duane et. al. [1985] use knowledge driven production rules to evaluate
the region segmentation of an image [2]. This evaluation is used to group
smaller regions into larger ones. This evaluation can also resegment a region
with new parameters. The segmentation i{s performed by a single routine that is
data driven using no other knowledge. On the other extreme Nazif and Levine
(19841 use production rules to control all aspects of the segmentation process
[3). Rules control the analysis and groupings of l1ines, and regions as well as
the scheduling of different segmentation tasks.

Our knowledge based segmentation approach makes use of an in house existing
1ibrary of image segmentors. The knowledge based control chooses segmentors
from this 1ibrary of operators. It uses external knowledge, and knowledge
extracted from the image, to choose the best operator and parameter values for

a given situation.

]
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2.0 APPROACH

To use knowledge effectively, the algorithm segmentation process is divided
into 1ndependent knowiedge driven algorithm modules. Each of the algorithm
modules performs a specific step 1n the processing flow. To make a given unit
knowledge driven, any knowledge that could possibly aid in the task of the
module must be identified and quantified. It is not important where this
knowledge cames from, just that it can be known and can be useful in performing
the module's task. For example, an algorithm module to do noise cleaning could
use knowledge about the overall contrast of the {mage to determine which noise
cleaning operators to use. This knowledge could come from actual measurements
of the image or it could be derived from other knowledge such as the type of
sensor used, the weather conditions, and the time of day.

A1l of the information known about a scene {s held in a central data based
called the global knowledge base (GKB). The GKB handles all of the knowledge
transfer between different modules in the system. Each module takes knowledge
it needs fram the GKB and returns any new knowledge generated to the GKB.

Once the pertinent knowledge has been identified, the operation of each module
{s designed to be controlled in termms of this knowledge. Production rules have
proved to be a good method for knowledge based control within a module. .A
typical rule 1s made up of an anticedent and a consequent. The anticedent
consists of one or more tests of information in the GKB. If all of the tests
in the anticedent are true, then the consequent is executed. The consequent
consists of one or more actions that can either change information in the GKB
or execute an image processing function. Using production rules makes the
control of the segmentation processing knowledge driven, but also makes it
flexible and modifiable. Production rules can be added or deleted as new types
of knowledge or new image processing routines are added to the system.
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3.0

SYSTEM DESCRIPTION

A prototype knowledge driven segmentation system has been developed in the -

System and Research Center's Image Research Laboratory. The system has shown ~j

good results on a number of images from a wide range of scenarios. An overview

. description of the implemented system is presented in the remainder of this

section, Figure 1 shows a block diagram of the prototype knowledge based

segmentation system. The processing is divided among four modules which do: =

goal determ{nation, preprocessing, segmentation, and region evaluation. Each

of these modules has a separate knowledge base that contains the production

rules specific to the module, and has access to the GKB for scene information.

: The goal determination module determines the segmentation goals from the system
- goals. The system goals are usually based on the specific mission, but they ’

- could also conceivably change during a mission. .An example goal determination g

rule fram our prototype system is:

RULE #15: IF (GOAL=TARGET_RECOGNITION) THEN (SHAPE_GOAL=CONVEX)

This rule suggests that if the system goal is to recognize targets then the

shapes sought will be convex.

- The preprocessing algorithm shown in Figure 2, takes in the original image and

preprocesses it to accomplish tasks such as noise cleaning and image
enhancement. This module uses knowledge, such as sensor type, to determine the

preprocessing steps. The preprocessing module can also generate knowledge,

such as the overall image contrast, to be used by other modules. A sample

P R T

preprocessing rule fram our prototype system is:

RULE #08: IF (HIGH_FREQ_NOISE) THEN RUN(WINDOW_AVERAGE_ROUTINE)

For this rule it {s not important how it was determined that the image has high
frequency noise present. It is just important that the noise {s present. The
fnformation could have come from image measurements or from prior reasoning I
based on the sensor type and the time of day. .After preprocessing comes the

actual segmentaton,
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Figure 1.

Knowledge based segmentation system
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The segmentation module, shown in Figure 3, takes in the preprocessed image and
applies segmentation operators fram a 1ibrary of possible operators. Each
operator in the 1ibrary has strong points and weak points. Table 1 shows the
suite of segmentation operators which are currently 1n the system. It {s the
job of the segmentation module to choose the best operator based on the
segmentation goals and on the current scene knowledge from the GKB. Besides
doing the actual segmentation, the segmentation module generates knowledge to
be put in the GKB for use by other modules. This includes image knowledge,
such as the total number of regions segmented, as well as knowledge about each
individual region, such as shape and contrast. The segmentation module is
sufficiently general so that it can segment regions or entire scenes. This
makes the same module usable for initfal segmenfation of full images or

resegmentation of individual regions. An example segmentation rule from a
prototype system is:

RULE #47: IF (SHAPE_GOAL=CONVEX and CONTRAST<LOW) THEN (RUN TBL)

This rule recommends the segmentation operator TBL when the contrast of the )
image fs low and the goal is to find convex objects. _After the image is -
segmented into regions, the regions are passed one at a time to the region -
evaluation module.

SEGMENTOR TECHNIRUE APPLICATION T
TexTurRe BounDARY | TEXTURE BASED Low CONTRAST BOUNDARIES N
LocaTor (TBL) -

ProToTYPE SIMILARITY| REGION BASED Low TEXTURE REGIONS T?
TRANSFORM (PST)
M70 DiGiTAL Epce BaseD HigH CONTRAST BOUNDARIES “
GRADIENT (MDG) =

TABLE 1. SeGMENTATION TecHNIQues Used By -THe KNowLEDGE BASED
SEGMENTATION SYSTEM,
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The region evaluation module, shown in Figure 4, determines what processing
shcv1d happen next for each region found by the segmentation module. The
region evaluation module recommends that a region be: accepted, resegmented,
or ignored. This recammendation is based on knowledge about the specific
regfon and on the segmentation goals. The segmentation module, working
together with the region evaluation module, produces the best possible
segmentation for the image based on the current segmentation goals. An example
region evajuatfon rule is:

RULE #75: IF (GOAL_SIZE=SMALL and GOAL_SHAPE=CONVEX

and REGION_S IZE=L ARGE and REGION_SHAPE=CONCAVE
THEN (RESEGMENT_REGION)

This knowledge driven architecture makes the best use of all available
knowledge about the scene. It also provides an approach for making use of
information across multiple sensors. The processing for each of the sensors
can be designed to be knowledge driven, with all sensor processing paths
sharing the same GKB. This would allow each sensor's processing flow to use
any knowledge possible, even 1f it comes fram another sensor.

This type of system architecture also can be designed to make use of
information across multiple frames of a scene. Information learned fram the
processing of one frame could be used to help processing of successive frames.
For example, 1f a convex object is found in one frame at a certain size, this
infomation could be used to 1ook for more convex objects of the same size in
successive frames. This could improve overall system performance by giving the
system more information about what it can expect to see in a given frame. e
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Figure 4. Region evaluation module
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Figure 5. Original visible image for a road following scenario
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4.0 EXPERIMENTS AND RESULTS h

In the following we describe the results of the implemented knowledge based

segmentation system for a sample experiment conducted in the Image Research -
Laboratory for ground scenarios imagery.

[l A

.
LSS

Figure 5 shows a sample video image of a road with obstacles on 1t. This image
represents a road following scenario where the goal is to find the road and
then determine 1f there are any obstacles in the road. Figure 6 shows the
result of a texture based operator on the road image. Figure 7 shows the
results of an edge based segmentor and Figure 8 shows the results of a region
based segmentor. None of these results are sufficient to identify the road and
the obstacles. The knowledge based control breaks the path following scenario Y
into two goals. The first goal is to find the road by looking for large

23

'y
b

regions without looking for details. Usfing these goals the segmentation module -
recammends running TBL on a lower resolution of the image. Figure 9 shows the et
results of this first pass of segmentation. Each of the larger regfons pass o
the segmentation goals at this point and are accepted by the region evaluation :E::
module,
The second set of segmentation goals for this path following scenario =
recommends to look for small convex obstacle 11ke regions within each of the X
larger regions. When the regions are evaluated with respect to these new
goals, the region evaluation module recammends passing the larger regions back -
to the segmentation module for resegmentation. Figure 10 shows the o
resegmentation results for the center road region. Notice the obstacles are .
now segmented out. Figure 1l shows the total image segmentation when the Tf.
resegmentation results are combined backinto a full image. -
-
o
)
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Figure 6. TBL segmentation of full image

Figure 7. MDG segmentation of full image
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Figure 9.

Figure 8.

PST segmentation of full image

Segmentation of low resolution image
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Figure 10. Resegmentation of road region

Figure 11. Full knowledge based segmentation results
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5.0 SUMMARY

The overall performance, robustness and multi-scenario operaton of a computer
vision system can be improved by making use of all possible knowledge about a
scene. Knowledge can be better used by designing the processing control to
make use of 2all available information. By using production rules the system
can be knowledge driven and also be flexible and easily expandable when new
image processing routines are added to the system. A prototype experimental
system has teen implemented for knowledge based region segmentation and
resegmentation with encouraging results.

.A much more difficult problem, than regfon segmentation, is the classification
and labeling of the regions in a scene. The approach we have described in this
paper is goal driven segmentation and therefore provides labeling information
about the region if the goal is met satisfactorily. This aspect of the
approach is being explored as a follow-up to the current application.
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ABSTRACT

This report provides a brief summary of a research project currently under way
in the Honeywell Systems and Research Center on the use of "depth cues" in

tf general and on optical flow in particular for dynamic scene analysis. The 2-D
optical flow fields are determined by implementing a gradient technique which
ﬂ! relates the changes of brightness in the image sequence to the spatial

movements in the scene. The results of the use of this technique on a sequence
of visible images are given, Furthermore, a multi-sersor approach (which is
currently being implemented) is presented for the construction of 3-D optical
field from 2-D optical field and range information available from a ranging
sensor, This will permit derivation of the complete 3-D motion parameters of
the moving objects arbitrary motions in the scene.
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R 1.0 INTRODUCTION

'u This report summarizes the preliminary results of Internal Research and
Development (IR&D) work on the feasibility of the use of 'depth cues' in
dynamic scene analysis.

<

N
Humans readily use monocular depth cues, such as occlusion, texture gradient

’ and optical flow. [1, 2] Isolated attempts at using some of these depth

- cues for computer vision and scene understanding have been made by various

- researchers [3-19] in the last decade. However, no systematic effort on

& studying the use of these depth cues for computer vision has been reported.
Some of the depth cues such as occlusion and texture gradient are useful in
static scenes. Others, such as optical flow, are beneficial in dynamic

o environments where the position of the viewer with respect to a static scene

" changes, or the viewer is stationary and the positions of some of the

s objects in the scene vary with respect to the viewer, or there is a

p combination of these two cases.

ll In our study we are considering the use of occlusion cues, texture gradient,
and optical flow for the extraction of three-dimensional (3D) information

Ef from a scene. In this preliminary report we describe our approach for using

- optical flow to extract 3D information. This will greatly aid the process

[ | of dynamic scene analysis, and will facil{itate studies of temporally

. changing object features. In later reports, we will present the results of

- our studies in using both occlusion and texture gradient cues.
There are several ways in which the Hierarchical Multisensor Image

= Understandig (HMIU) program can benefit fram these studies. Depth cues in
general and optical flow 1s particular provides 3D information at the lower
level of the hierarchy which will be crucial in single sensor image

& understanding. Moreover, in our approach we plan to fnitiate a multisensor

- fusion process at this low level by combining 2D optfcal flow (obtained from

5? IR or TV) with the range information available from a ranging sensor to

create 3D optical flow of the scene. This 3D optical flow is then used to




D o A i

extract 3D motion parameters of the moving objects. We have to note that by l
using single sensors, only the 2D projected motion parameters can be

derived. However, in our multisensor approach, the complete 9 parameters -
needed for 3D motion description of moving objects can be extracted. "

L am ot as ee
~

Figure 1 shows the various steps fnvolved in our approach., From the -
infrared or visual images, 2D optical flow will be derived which will then

T

combine with the range information available from the millimeter wave radar
(or 1idar) and will lead to the formation of the three-dimensional (3D)
optical flow. The nine motion parameters are obtained from each velocity o
vector. By using the generalized Hough transform method the motion 3;
parameters of the rigid body motions in the scene can be specified. In this

o an o e e o

method, each velocity vector 'votes' for a set of motion parameters and the

parameter values receiving the most votes are selected to describe motion of

the moving object.
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2.0 DETERMINING 2-D OPTICAL FLOW

There are two main approaches in the literature for the determination of
optical flow: gradient methods and matching techniques. In matching
techniques, one has to follow the motion of prominent feature points from
frame to frame in an image sequence. These techniques require an initial
segnentation of the imagery and more importantly they rely on the finding of
the best matching points. The gradient methods, however, avoid the
correspondence problem by using the original unsegmented images and making
use of the gradient constraint equation which relates the changes in
brightness to the temporal changes in the scene. For an object of constant
brightness U(x, y, z)» the following equation is derived

V. + RES =0 (1)
Vi Y

where

“r2x , Wire vt
V= ‘:-D.t' ) tljl = [}28; ’1%7.1 (2)

['7’“' jk] CL, ] (3)

We used a gradient method [7,13] for the determination of optical flow.
This technique is an fterative and robust method for the determmination of 2D
optical flow V, Some of the features of this method are as follows:

o Samples are taken at discrete points fn space and time and
quantized in brightness.

AY™S
It
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o Partial derfivatives and = are estimates by averages

using eight measurements 1n two image frames.
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E‘ o The criterfa that is minimized is the square of the magnitude
! of the gradient of the optical flow velocity

components ?fx ) 'v:,
3
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The final iterative relations for estimating V¥ and‘ll" are as the following:
b §

"M o__n

- N | 2 2
Vo= Ve = DY+ Wy U+, ) S+ 4y)  (Sa)

-
P

)

- -0 - N
V = U - M, [Ty + Uy, +1L¢]/(o<"+x,f'+u§\ (S-b)

where o 1s a weighting factor.
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3.0 DOETERMINING 3D OPTICAL FLOW

¥ ]

o

: ¥

4 Consider a viewing geametry, as depicted in the Figure 2, defining the three
! camponents of 3D optical flow as Wy, Wy and Wz, and, using geaometrical

& relations, the following equation can be derived:

(f=2)Vy = Wyf + xlW, (6-a)

(f=2)Vy = Wyf + ylw; (6°b)

By using focal length of the camera f; positional coordinates in the image
::‘: x1, yl; 2D optical flow velocity components V, and Vy; and depth information

z, Wz; the components Wy and Wy will be computed.
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4.0 DCETERMINING MOTION PARAMETERS
;4 The motion of rigid bodies in the scenhe are described relative to a frame of

N reference. We assume that this frame is fixed to the viewer. The most
"y general type of motion is described by the following relation:

X=Xp+P (7-a)

-<
]

Va+ XP (7-b)

where P = X=Xp

> andﬂis the rotation vector at a point A on the rigfd body. Vp is the

: velocity component associated with the translation velocity of the point.A.
- so the rigid body motion can be described by 9 parameters Va,fl, X, Xa.

l'::f Figure 3 shows the relations between the viewer frame of reference and the
rigid body's frame of reference. For determining (] we first calculate
rotational direction W which {s defined asmby using three successive 3D
optical flow measurements to obtain 2 acceleration vectors aj, az W is

L found from the following relatfons

W=a1 Xay(a Xaz) (8)

. VT and [f)| w111 be determined from the following relation:

v=vr+|{Qwxe (9)

From each velocity vector the motion parameters will be extracted and then j
by using a Hough transform [20] like procedure, the motion parameters of the
solid objects will be extracted by noticing that moving rigid bodies will
have the highest number of points having the same motion parameters in the

P L RO

scene. The Hough transform was originally developed for the detection of

Ly

strafght 11ne segments {n image. In this technique the points in the image

. 'l {l
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are transformed into 1ines in a parametric (1ine-intercept) space. Lines in
the slope-intercept space corresponding to colinear points will cross each
other 1n one point. This technique recently has been generalized for
detection of more camplex patterns in multi-dimensional spaces.
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5.0 PRELIMINARY EXPERIMENTAL RESULTS

A sequence of 12 TV images were created from a moving toy jeep at the rate
of 30 frames per second. Figures 4 and 5 show the first two frames of
pictures of the moving jeep. Using the gradient technique described
previously, the optical flow fields by using different number of frames and
varying the values of N and the scale factor were obtained. Figure 6
shows the derived optical flow fields for®{= 2.0, N = 16 and scale

factor 2. .As can be seen from Figure 5, the outer boundaries of the jeep
can be easily inferred from the optical flow fields. Furthemore, some of
the surface orientation properties of the jeep have also exhibited
themselves 1n the optical flow field. This is very useful information that

is currently under investigation.
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- Figure 4. Image of the First Frame of a Sequence
of a Moving Jeep
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Figure 5. Image of the Second Frame of a Sequence
of a Moving Jeep
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6.0 SUMMARY

ROVCNRAIL ) AN

In this report a brief description of a research project currently under way

fﬂ at the Honeywell SRC/SIP on the use of "depth cues™ in general and optical
-

v flow in particular for dynamic scene analysis was given. Our overall

ii multi-sensor approach for the construction of 3-D optical flow and the

extraction of 3-D motion parameters was described and the preliminary
results of the implementation of a 2-D optical flow technique as part of our

1701 'a

overall approach, on a sequence of visible images were presented.
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BELIEF MAINTENANCE FOR A FUZZY REASONING SYSTEM

"

ABSTRACT

s a

OACy
[ B

W )
.

Real world problem solving often involves (1) dealing with uncertain and
imprecise knowledge and (2) making assumptions which are then verified or
denied by the reasoning process. Fuzzy logic is presented as the mechanism for
dealing with measures of belief and a maintenance system {s proposed for
handling assumptions and the accrual of evidence.
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BELIEF MAINTENANCE FOR A FUZZY REASONING SYSTEM

1.0 JINTRODUCTION

Expert systems and the accompanying reasoning systems are at the forefront of
the artiftcial intelligence research that {s being applied to computer vision
and image understanding systems [1,5,7,9,11,16]. The difficulties associated
with acquiring and encoding expertise are a major bottleneck in the practical
application of expert systems. Expert knowledge is often imprecise (vague) or
uncertain and the rules used in inferencing with knowledge in this form must
model and support measures of belief. Several methods based on probability
have been presented and used for dealing with uncertainty [2,6,15], yet none of
these methods deals well with the imprecision or vagueness {inherent in expert
knowledge. Fuzzy logic, based on fuzzy set theory [19,21,22), assigns
intervals of possible values to a fact rather than a single probabilistic
value. Research is befng pursued 1n unifying the possibilistic and
probabilistic approaches [8,13,18] and in the application of fuzzy logic to
expert systems [1,8,12,17,20] and to image understanding [14]. Section II
explatins the basic concepts of inferencing with fuzzy logic.

The knowledge in reasoning systems is also incomplete and assumptions must be
advanced or it i{s inconsistent and conflicts must be resolved. Human reasoning
makes use of the assumption verification/denial paradigm. In problem solving,
the human will assume certain facts in order to drive the reasoning process.

If an assumption is proven incorrect, the reasoning based on that assumption is
ignored and the problem solving continues, possibly with another assumption.
This sort of non-monotonic reasoning requires facilities for maintafning
evidence for facts and resolving conflicts [10]. 1In [3], facts are based on
endorsements and in [4] facts are considered true based on a support 1ist. The
reader should fnvestigate these methods; however, an extension to the latter
method is provided in Section III.

Section IV is an example of a belief matntenance system for fuzzy logic applied
to the classification of regions within a scene. The system maintains
dynamically accrued facts and assumptions with measures of belief.




2.0 FUZZY SET THEORY AND FUZZY LOGIC

Fuzzy set theory, introduced by Zadeh [19] in 1965, deals with the notion of
imprecision in discrimination between sets of objects. Conventional or 'crisp'
sets have sharp boundaries and objects either belong to a specific set or do
not belong to that set. Fuzzy sets, on the other hand, contain objects which
have a degree of membership between 1 (full membership) and 0 (nonmembership).
An example may further clarify the difference. The crisp set of BRIGHT pixels
may be defined as all pixels where the average pixel intensity is above some
threshold. The fuzzy set of BRIGHT pixels assigns a degree of membership to
each pixel value, such that pixels with a Tow intensity have a 1ow degree of
membership in the set of BRIGHT pixels and vice versa for pixels of high
intensity.

Let S be a set of objects and F be a fuzzy subset of S, such that for each s in
S, there 1s an associated degree of membership in F. If S is the set of pixel
intensities (values 0 to 255) then BRIGHT could be a fuzzy subset of S, where
each pixel intensity {n S has a degree of membership in the set BRIGHT. In the
following example of a four interval set BRIGHT, the degree of membership is .3
for a pixel intensity of 120.

BRIGHT = 0/{0-63} + .3/(64-127} + .7/(128-191} + 1.0/{192-255}

If the fuzzy subset is continuous rather than discretized into {ntervals, the
membership function becames a curve as in Figure 1.

- BRIGHT

1.0 |

| !

| |

| |

- | NOT VERY l
g | smiGHT VERY !
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2 . '
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In a rule based system the predicates or facts as well as the antecedents and
consequents of the rules are in the form:

2

"attrfbute of object IS/HAS value".

:l v
RV

If V is a varfable for the attribute of an object where the domain of V is S,
A then the proposition "V is F", where F 1s a fuzzy set, induces a possibility
r distribution, u, over the set S, such that u(s) = F(s). F(s) {s the degree of
membership of s in F and u(s) is the possibility that V = s given the data "V

f is F". The differences between possibility values and probability values f{s
- heavily debated and not an issue here, yet an example may provide some {nsight
E into the difference. In the above fuzzy set BRIGHT we see that pixels with an
- intensity value between 128 and 191 are given a .7 degree of membership in

E BRIGHT. This can be viewed as a 70% possibflity that a pixel intensity is

BRIGHT, yet it cannot be 1nterpreted as .7 probabilfty. In probability, the
sum of all the {ndividual probabilities 1s 1, while tn possibility many set

E:j members may have the value of 1 (full membership). Therefore the proposition
"V is F" assigns a possibility or degree of membership based on the fuzzy set

ﬁ F, to each value V can represent.

£ Rules are represented in a conditional form such as

L
(]
270 o

"if V is F then W is G"

0o

where F and G are fuzzy subsets of S and T respectively. This rule induces a

F‘ conditional possibility distribution u(s,t) where

r- u(s,t) = min (1, 1 - F(s) + G(t)).

[ Compound antecedents or consequents are dealt with by two other compositional

h rules. The conjunction form

[ "1 is F1 and V2 is F2 ... Vn {s Fn"

i

i_ where Fj 1s a fuzzy subset of Sj, induces a joint possibility distribution
u(sl,s2,...sn) where

f_g u(sl,s2,...sn) = min (F§(sJ)] for J=1,n. 3




The disjunction form

"Y1l is F1 or V2 is F2 ... Vn is Fn"

where Fj 1s a fuzzy subset of Sj, finduces a joint possibility distribution
u(sl,s2,...sn) where

u(sl,s2,...sn) = max [Fj(sj)) for j=l,n.

Combinatfons of these compositional rules and the conditional rule can be used
to generate possibility distributions. For example,

"{f V1 is F1 or V2 is F2 then W is G"

1nduces the possibility distribution u(sl,s2,t) where

u(sl,s2,t) - min (1, 1 - max [F1(sl),F2(s2)] + G(t)).

There are also modification rules such as "not" and "“very". -

i

"Y 1s not F" induces u'(s) = 1 - F(s). o

"V {s very F" may induce u"(s) = [F(s)] squared. o

Inferencing about fuzzy knowledge 1s based on modus ponens. That is, given A ~
and the knowledge that A implies B, then B is inferred. This {s a conjunctive

of the form o

"Y is F and (if V is F then W is G)" Eﬂ

ol

where F and G are fuzzy subsets of S and T respectively. This {nduces the .

joint possibility distribution u(s,t) where ..a

u(s,t) = min [F(S)r min [lpl-F(S)"‘G(t)]]
= min [F(s), 1-F(s)+G(t)].

.......................




Since the possibility distribution u(t) for "W 1s G" is what is being inferred,
then the maximum u(s,t) for each t is the possibility distribution for each
G(t). This leads to

u(t) = maximum u(s,t) over all s
= max [min [F(s), 1-F(s)+G(t)}]1] over all s.
= min (F(s), 1-F(s)+G(t)] when s §s known

The strength of a fuzzy set value can be determined in several ways.

l. The expected value may be obtained by some method such as mean

distribution and the strength of a fuzzy set is the membership value at
that expected value.

2. The strength could also be the sum of the membership values for each

interval. This {s the {ntegral of a continuous function over the fuzzy
set.

3. A threshold membership value 1s determined and some measure of those
intervals which exceed the threshold 1s used as the strength of the
fuzzy set.
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3.0 BELIEF MAINTENANCE

Figure 2 gives an example of a reasoning system for image understanding. The
fuzzy belief mafintenance system receives predicates fram the inference engine
and maintains consistency among beliefs. Section IV gives an example of this.

In reasoning over a set of rules and facts, there may be equally certain yet
conflicting facts, or there may not be enough current knowledge to confimm a
fact. An assumption s advanced and the reasoning process continues (as may
the knowledge acquisition process). .At same pofnt 1n this process, the
assumption may be confirmed and all knowledge inferred from the assumption is
updated accordingly, or the assumption fs denfed and the knowledge which is

singularly inferred from the assumption is removed from the set of current
beliefs.

Inconsistency 1n the current set of beliefs occurs when a belief or predicate
has two conflicting values. Conflict resolution in this sense then encompasses
dealing with two confiming pleces of evidence as well as complementary pieces
of evidence.

Conflict resolution occurs at the instant a conflict arises. There are four
meta-rules for the resolution process.

1. If neither the current belief of a fact nor the new belief of that fact
are based on any assumption, then if the new belief {s stronger than
the current belief (measures of strength discussed above), replace the
current belief with the new belief and propagate the new belief value
to all the other facts dependent on the fact.

2, If the current belfef of a fact is based on an assumption and the new
belief of that fact 1s not, then replace the current belief with the
new belief and propagate that value to all the other facts dependent cn
the fact.

3. If the current belfef of a fact {s not based on an assumption and the
new belfef of that fact is, then do nothing.
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4, If the current belief and new belief of a fact are based on
assumptions, then if the new belief is "significantly less assumption
based", replace the current belief with the new belief and propagate
the new belief value to all the other facts dependent on the fact.

In the fourth meta-rule above, the qualifier "signficantly less assumption
based" 1s some measure of inherited assumption which fs a distance function in
the inference network. Intuitively, beliefs based on some distant assumptions
may also have inherited some facts, while belfefs based on less distant
assumptions are 1ikely to have inherited less facts. Practically, retaining
the most distant belief will mean Tess propagation.

The format for beliefs being maintained is:
(FACT) (FUZZY SET) (BASIS) (VALUE)

where FACT 1s a predicate from the knowledge base (ie, REGION_INTENSITY {s
BRIGHT) ;

FUZZY SET 1s the fuzzy set associated with the fact (i1e, the fuzzy set
BRIGHT) ;

BASIS is the support for the fact (this includes a tag for indicating
inheritance of assumption, all rules which infer the FACT, and the
accompanying facts which triggered the rules);

VALUE is the real value of the fact (ie, 128 is the REGION_INTENSITY).
If YALUE 1s empty then the expected value of the fuzzy set can be
computed and used as the value.

(8
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4.0 EXAMPLE OF BELIEF MAINTENANCE FOR REGION CLASSIFICATION

In the following example, the fuzzy techniques and the belief maintenance
system, described above, are integrated into a region classification tool.
Sensor input to the system is provided by MMW and IR sensors. In addition,
wind velocity 1n scene, sensor inclination (vertical direction), apriort
knowledge (ie, map), and region knowledge from previous scenes or from other
regions in the current scene, are inputs to the system.

Example Rule Base:

Rl HIGH(LINE OF SIGHT FROM INCLINATION) ==>> (SKY)
(SKY) ==>> UNLIKELY(ROAD) and UNLIKELY(RIVER)
HIGH(TEXTURE FROM MMW) ==>> (ROAD)

LOW(TEXTURE FROM MMW) and (WINDY) ==>> (RIVER)
HIGHCINTENSITY FROM IR) ==>> (ROAD)
LOWCINTENSITY FROM IR) ==>> LIKELY(RIVER)

BB RER

The quantifiers/qualifiers preceding the predicates, modify the predicates in
specified ways (see [18-22]). HIGH may shift all the degrees of membership to

the right and LOW may shift all the degrees to the left as 1n the following
example.

domain:pixel values 0-50 51-101 102-152 153-203 204-255

(average) INTENSITY .1 o7 1 .6 .1
HIGH INTENSITY 0 0 .1 .7 1
LOW INTENSITY 1 .6 .1 0 0

Thus, an IR intensity value of 100 would be a 0 degree of membership in the
fuzzy set HIGH INTENSITY, and .6 degree of membership in LOW INTENSITY, LIKELY
increases the degree of membership for each interval, while UNLIKELY decreases
the degrees of membership. In the following example, ROAD {s a fuzzy set over
the domain of depth, such that a road is less 1ikely to be classifiable 10 km
from a sensor than a road 2 km from a sensor. The following example
increases/decreases ROAD by .2 degrees of possibility.
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domain:MMW range(km) 1-3 3-5 5=7 7-9 9-11 11-

(default) ROAD 1 1 .8 .6 3 .1
LIKELY ROAD 1 1 1 .8 .5 .3
UNLIKELY ROAD .8 .8 .6 4 .1 0

The predicates and associated fuzzy sets in the example are as follows.

The SKY domain 1s the mean horizon height in an image (512 11nes) such that a

region between 350 and 400 pixels has a .8 degree of possibility (pixels
numbered from bottom).

SKY = 0-101 102-204 205-307 308-409 410-511
degree 0 o2 5 .8 1

The ROAD domain is the depth of region such that a region at 8 km has a .6
degree of possibility.

ROAD = 1-3 3-5 5-7 7-9 9-11 il-
degree 1 1 .8 .6 3 .1

The RIVER domain is the depth of region similar to ROAD.

RIVER = 1-3 3-5 5-7 7-9 9-11 11-
degree 1 .9 .7 .4 .2 .l

The WINDY domafn fs the velocity at time of image.

WINDY = 05-5 5-10 10-15 15-20 20-25 25-30 30-
degree 0 .l .3 5 o7 .9 1

The LINE OF SIGHT (LOS) domain is the inclination fn angular degrees of
sensor. The possibflity of regions belonging to a certain class may be
influenced by the 1ine of sight (see rule 1).

LOS = -30'  -20' -l10' O 10 20" 30!
degree .1 .5 .8 1 .8 .5 .1
9
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The TEXTURE domain {s based on the mean {ntensity value from MMW in a
granularity measure from 1-8, where 1 1s low texture.

TEXTURE = 1 2 3 4 S 6 7 8
degree 0 .3 .6 .9 1 .7 .4 .l

The INTENSITY domain is the mean pixel brightness of IR.

INTENSITY = 0-50 51-101 102-152 153-203 204-25¢
degree .1 o7 1 .6 .l

Given a value for a fact, the fact and current degree of membership for the
value are added to the 1ist of beliefs. If no value is known bdut the fact is
either input or inferred then the fact is added to the 1ist of beliefs and the
value will be the mean distribution of the fuzzy set.

In the following example, nothing is known at the start of the classification,
but as requests for more information are answered by the DASM knowledge is
accrued and a classification is arrived at. The system begins with the initial
classification RIVER (possibly fram apriori knowledge of the scera).

1. (RIVER) (1 .9 .7 .4 .2..1) (A) O)

Information is requested by the system to continue processing. The information
may come from sensors, apriori knowledge, etc. LINE OF SIGHT at a 10 degree
incline is input from DASM.

2. (LOS) (.1 .5 .81 .8 .5.1) () (+10")

Rule 1 1s triggered, adding SKY to the belfef 1ist.

3. (SKY) (.2 .4 .7 .8 .8) (R1 2) ()
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4. (ROAD) (.5 .5 .5 .5 .5 .5) (R2 3) ()

Rule 2 infers ROAD above and infers RIVER below.
(RIVER) (.5 .5 .5 .5 .5 .,5) (R23) ()
Since the original RIVER was assumption based, it is replaced.
1. (RIVER) (.5 .5 .5 .5 .5 .5) (R2 3) ()
The system requests more informatfon from DASM.
5. (TEXTURE) (0 .3 .6 .91 .7 .4 .1) () (6)
6. (WINDY) (0 .1 .3 .5 .7 .9 1) () (25 mph)
Rule 3 is now triggered, inferring ROAD again.
(ROAD) (.6 .6 .6 .6 .6 .5) (R3 §) ()

Since the original ROAD and the new ROAD are both fact based, the fuzzy sets
are ORed (max of each {interval).

4- (ROAD) (06 06 06 -6 06 05) (Rz 3’ m 5) ()

Rule 4 infers RIVER with a value below some threshold and the new value for
RIVER fs 1gnored. RIVER could have ben ORed with the original value producing
the same results.

(RIVER) (.1 .1 .1 .1 .1 .1) (R4 5 6) ()

Suppose a strength of .7 1s needed to conclude a fact.

ROAD has a strength of .6 and RIVER has a strength of .5 resulting in a request
from DASM for more information {n order to obtain a stronger conclusion. Here
the intensity value from an IR sensor {s fnput to the system.
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7. C(INTENSITY) (.1 .7 1 .6 .1) () (45)

Rules 5 and 6 are triggered inferring RIVER and not inferring ROAD at all.
(ROAD) (000000) (RS 7) ()

ROAD is fgnored since the value or strength is nil.
(RIVER) (11 .9 .6 .4 .3) (RET7) ()

The new RIVER is ORed with the orfginal RIVER resulting in a strong conclusion
for river.

1. (RIVER) (11 .9 .6 .5 .5) (R23, R6 7) ()

At this point, RIVER has a strength of .75 and the particular region is
classified as a river,
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5.0 SUMMARY o

Fuzzy logic provides a tool for belief measures in reasoning systems with
uncertain and imprecise facts. The non-monotonic belief system proposed here
reasons over incomplete and inconsistent knowledge. .Assumptions assist the
acquisition of knowledge and can be removed fram the set of currently believed o
facts when the assumptions conflict with non-assumed facts. This belief system e
enhances the acquisition and inferencing of knowledge in a fuzzy reasoning )
system.
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